
Automating the Analysis of Planetary Nebulae Images

Bernd Fischer Johann Schumann

RIACS / NASA Ames Research Center
E-mail:{fisch,schumann }@email.arc.nasa.gov

Abstract

Scientific data analysis involves the task of fitting statisti-
cal models of the studied processes to collected data. Here,
we take a typical task, the analysis of planetary nebulae im-
ages taken by the Hubble Space Telescope, and describe
how the program synthesis systemAUTOBAYES can be
used to generate the necessary analysis programs. We de-
scribe theAUTOBAYES system and discuss its fully declar-
ative model specification language. We present the auto-
matic derivation of the scientists’ original analysis [12] as
well as a refined analysis using image segmentation models.
This demonstrates that theAUTOBAYES synthesis system
can be applied to realistic scientific data analysis tasks.

1 Introduction

Planetary nebulae are remnants of dying stars. Scientists
try to understand their physics by collecting and analyzing
data, for example images taken by the Hubble Space Tele-
scope (HST). The analysis follows a general pattern in sci-
ence: the scientists formulate their initial understanding of
the underlying physical processes as a model, fit the model
to the collected data (i.e., estimate the values of the model
parameters of interest from the data), interpret the results,
and refine the model as long as necessary. Since both the un-
derlying processes and the data collection are fraught with
uncertainty and noise, statistical models are used.

In most disciplines, the large data volumes collected by
modern instruments make computer support indispensable.
Consequently, development and refinement of the necessary
data analysis programs have become a bottleneck, and it
is not unheard that tapes of unanalyzed data sit in ware-
houses for several years before the software is finally com-
pleted. To increase the speed with which reliable data anal-
ysis software can be developed, we are currently building
the AUTOBAYES system.

AUTOBAYES is a fully automatic program synthesis sys-
tem for data analysis problems. Its input is a declarative
problem description in form of a statistical model; its out-

put is documented and optimized C/C++ code. Its schema-
based approach allows the use of advanced algorithms and
data structures and yields fast turnaround times comparable
to compilation times, supporting the iterative development
style typical for the domain. AUTOBAYES thus enables the
scientists to think and to program in models instead of code.

In this paper, we take one typical scientific data analysis
problem—the analysis of planetary nebulae images taken
by the HST—and show that and how AUTOBAYES can be
used to automate the implementation of the necessary anal-
ysis programs. We initially follow the analysis described
in [12] and use AUTOBAYES to derive code for the models
published by the space scientists. We then go beyond their
analysis and use AUTOBAYES to derive code for a simple
image segmentation procedure which can be used to auto-
mate a manual preprocessing step done by the scientists.
Finally, we combine the original approach with the sim-
ple image segmentation which yields a much more detailed
analysis. This also demonstrates that AUTOBAYES makes
it easy to combine different aspects of data analysis.

The main contribution of this paper is to demonstrate that
program synthesis in general and AUTOBAYES in particular
have reached a level of maturity which make them applica-
ble to realistic scientific data analysis applications. More-
over, we show that synthesis enables scientists to formulate
a more detailed analysis.

2 Background

2.1 Planetary Nebulae

Stars with initial masses between roughly 0.8 and 8 so-
lar masses turn into swollen red giants when they run out
of hydrogen to support their primary fusion process. In a
secondary fusion process, these giants then burn the helium
produced by the hydrogen fusion, resulting in a carbon-
oxygen core roughly the size of the earth. Eventually, the
secondary fusion runs out of fuel as well and the red gi-
ants begin to collapse into extremely hot white dwarfs. Dur-
ing this collapse, most of the material is expelled, forming
blown-out gaseous shells which are called planetary neb-

1



ulae. The shells continue to expand and after 10,000 to
50,000 years their density becomes too small for the neb-
ulae to be visible.

Figure 1. False-color image of IC418

Figure 1 shows a composite false-color image of the
planetary nebula IC418, also known as the Spirograph Neb-
ula, taken by the HST (Sahai et al., NASA and The Hubble
Heritage Team). The different colors (resp. gray-scales) in-
dicate the different chemicals prevalent in the different re-
gions of the nebula; the origin of the visible texture is still
unknown. The central white dwarf is discernible as a white
dot in the center of the nebula.

Planetary nebulae occupy an important position in the
stellar lifecycle and are the major sources of interstellar car-
bon and oxygen but their physics and dynamics are not yet
well understood. The characterization and analysis of their
properties is thus an important task in astronomy.

2.2 AUTOBAYES

AUTOBAYES[10, 11] is a fully automatic program syn-
thesis system for data analysis problems.1 Externally, it
looks like a compiler: it takes an abstract problem speci-
fication and translates it into executable code. Internally,
however, it is quite different: AUTOBAYES first derives
a customized algorithm implementing the model and then
optimized, imperative code implementing the algorithm.
AUTOBAYES is implemented in SWI-Prolog2 and currently
comprises about 64,000 lines of documented code. Figure 2
shows the system architecture; in the following we explain
the major components.

Statistical Models and Specification Language.A sta-
tistical modeldescribes the expected properties of the data
in a fully declarative fashion: for each problem variable
of interest (i.e., observation or parameter), properties and
dependencies are specified via probability distributions and
constraints. Figure 3 shows how a model (discussed in more
detail in Section 3.1) is represented in AUTOBAYES’s spec-
ification language.3 Line 1 just identifies the model. Lines

1AUTOBAYES is not yet available publicly; for a web-based interface
and other papers seehttp://ase.arc.nasa.gov/autobayes .

2http://www.swi-prolog.org
3Keywords have been underlined and line numbers have been added for

reference; comments start with a % and extend to the end of the line.

Figure 2. A UTOBAYES system architecture.

2 and 4 introduce symbolic constants whose values are left
unspecified but constrained by thewhere -clauses in lines 3
and 5, respectively. In general, constraints can be complex
boolean formulae tying together multiple variables (cf. line
11). Lines 6–14 introduce the parameters, again constrained
by where -clauses. Variables can be annotated withas -
clauses; these textual annotations are propagated into the
generated code to improve its legibility. Line 16 declares
the observation (denoted by thedata -modifier) as a ma-
trix; its expected properties are specified in the distribution
clause in line 17. In general, a distribution clause is of the
formx ∼ D(~y) wherex is a single variable or vector/matrix
element,D is a distribution, and~y are the distribution’s
parameters. Distributions can be both discrete (e.g., bino-
mial) or continuous (e.g., Gaussian, Poisson, . . . ) but have
to be univariate; multivariate distributions (i.e., functions in
IRN → IRM ) are not yet supported by AUTOBAYES. Dis-
tributions are chosen from a predefined list; adding more
distributions is straightforward. The final line in the model
is thetaskclause. It specifies the analysis problem the syn-
thesized program has to solve. Since AUTOBAYES only
supportsparameter learning(i.e., the estimation of the pa-
rameter values best explaining the observed data, given a
model) but notstructure learning(i.e., the estimation of
the best model itself), tasks have the form to maximize a
conditional probability w.r.t. a set of goal variables. In this
case, the task is amaximum likelihood estimationbecause
all goal variables occur to the right of the conditioning bar
in the conditional probability and there are no priors on the
parameters.

2



1 model gauss as ’2D Gauss-Model for Nebulae Analysis’.

% Image size
2 const nat nx as ’number of pixels, x-dimension’.
3 where 0 < nx.
4 const nat ny as ’number of pixels, y-dimension’.
5 where 0 < ny.

% Center; assume center is on the image
6 double x0 as ’center position, x-dimension’.
7 where 1 =< x0 && x0 =< nx.
8 double y0 as ’center position, y-dimension’.
9 where 1 =< y0 && y0 =< ny.

% Extent; assume full nebula is on the image
10 double r as ’radius of the nebula’.
11 where 0 < r && r < nx/2 && r < ny/2.

% Intensity; upper bound determined by instrument
12 double i0 as ’overall intensity of the nebula’.
13 where 0 < i0 && i0 =< 255.

% Noise; upper bound arbitrary, for initialization
14 double sigma as ’noise’.
15 where 0 < sigma && sigma < 100000.

% Data and Distribution
16 data double pixel(1..nx, 1..ny) as ’image’.
17 pixel(I,J) ˜ gauss(i0 * exp(-((I-x0)**2 + (J-y0)**2)

/ (2*r**2)),
sigma).

% Task
18 max pr(pixel| {i0,x0,y0,r,sigma }) for {i0,x0,y0,r,sigma }.

Figure 3. Complete A UTOBAYES-specification
for Gaussian model.

The application domain only uses restricted datatypes;
hence, the specification language currently supports only
the three basic typesnat , int , anddouble , with array
as the single type constructor. However, a more expressive
type system could be added.

Bayesian Networks.A Bayesian networkis a directed,
acyclic graph whose nodes represent random variables and
whose edges define probabilistic dependencies between the
random variables. AUTOBAYES uses them to represent the
statistical models internally. Figure 4 shows an example
network automatically extracted from the Gaussian model
specification and drawn using thedot graph layouter.

Figure 4. Bayesian net for Gaussian model.

AUTOBAYES uses a variant ofhybrid Bayesian net-
works, where nodes can represent discrete as well as con-
tinuous random variables; these are rendered as boxes and
ellipses, respectively. However, here all variables are con-
tinuous. Shaded nodes represent known variables, i.e., in-
put data. Shaded boxes enclosing a set of nodes repre-
sentplates[5], i.e., collections of independent, co-indexed
random variables. Distribution information for the random
variables is attached to the respective nodes. Here,pixel is
a nx×ny matrix of independent and identically distributed

(i.i.d.) Gaussian random variables with observed values.

Bayesian networks combine probability theory and
graph theory. They are a common representation method
in machine learning [5, 18] because they provide an effi-
cient encoding of the joint probability distribution over all
variables and thus allow to replace expensive probabilistic
reasoning by faster graphical reasoning.

Schemas and Schema Library. Program synthesis
from first principles (i.e., purely deductive synthesis) is no-
toriously difficult to scale up (cf. [3, 13]). AUTOBAYES

thus follows a schema-based approach. Aschemacon-
sists of a parameterized code fragment (i.e., template) and
a set of constraints. The parameters are instantiated by
AUTOBAYES, either directly or by calling itself recur-
sively with a modified problem. The constraints determine
whether a schema is applicable and how the parameters
can be instantiated. Constraints are formulated as condi-
tions on the Bayesian network or directly on the specified
model; they include the task clause as special case. This
allows the network structure to guide the application of the
schemas and thus to constrain combinatorial explosion of
the search space, even if a large number of schemas is avail-
able. Schemas can in principle be understood as conditional
rewrite rules on partially instantiated programs, where the
only redexes are maximization tasks. They are implemented
as Prolog-clauses and search control is thus simply rele-
gated to the Prolog-interpreter: schemas are tried in their
textual order. This simple approach has not caused prob-
lems so far, mainly because the domain admits a natural
layering which can be used to organize the schema library.
The top layer comprises network decomposition schemas
which try to break down the network into independent sub-
nets, based on independence theorems for Bayesian net-
works. These are domain-specific divide-and-conquer sche-
mas: the emerging subnets are fed back into the synthesis
process and the resulting programs are composed to achieve
a program for the original problem. AUTOBAYES is thus
able to automatically synthesize larger programs by compo-
sition of different schemas. The next layer comprises more
localized decomposition schemas which work on products
of i.i.d. variables. Their application is also guided by the
network structure but they require more substantial symbo-
lic computations. The core layer of the library contains sta-
tistical algorithm schemas as for exampleexpectation max-
imization(EM) [7, 14] and k-Means (i.e., nearest neighbor
clustering); these generate the skeleton of the program. The
final layer contains standard numeric optimization methods
as for example the Nelder-Mead simplex method or differ-
ent conjugate gradient methods. These are applied after the
statistical problem has been transformed into an ordinary
numeric optimization problem and AUTOBAYES failed to
find a symbolic solution for the problem. Currently, the
library comprises 28 top-level schemas, with a number of

3



additional variations (e.g., different initializations).
Symbolic Subsystem.AUTOBAYES relies significantly

on symbolic computations to support schema instantia-
tion and code optimization. The core part of the sym-
bolic subsystem implements symbolic-algebraic computa-
tions, similar to those in Mathematica. It is based on a
small but reasonably efficient rewrite engine which sup-
ports associative-commutative operators and explicit con-
texts. Hence, AUTOBAYES allows contextual rules (i.e.,
conditional rules accessing an explicit context) as for ex-
amplex/x →C ` x6=0 1 where→C ` x6=0 means “rewrites
to, providedx 6= 0 can be proven from the current con-
text C.” The contexts are managed almost transparently
by the rewrite engine; rewrite systems only need to contain
the non-congruent propagation rules which modify the con-
texts under which immediate subterms are rewritten, e.g.,
p ? s : t

∼→C (p ↓C) ? (s ↓C∧p) : (t ↓C∧¬p) for C-style
conditionals. Here,

∼→C and↓C denote context propaga-
tion from and normal form computation under the context
C, respectively.

Expression simplification and symbolic differentiation
are implemented on top of the rewrite engine. The basic
rules are straightforward; however, vectors and matrices in-
troduce the usual aliasing problems and require careful for-
malizations. For example, as the index valuesi andj are
usually unknown at synthesis time, the partial derivative
∂xi/∂xj can only be rewritten intoi = j ? 1 : 0. Some
rules even require explicit meta-programming, in particular
when bound variables are involved. In total, AUTOBAYES’s
symbolic system contains 365 rewrite rules.

Abstract interpretation is used as to efficiently evaluate
range constraints such asx > 0 or x 6= 0 which occur
in the conditions of many rewrite rules. AUTOBAYES im-
plements as a rewrite system a domain-specific refinement
of the standard sign abstraction where numbers are not only
abstracted intoposandnegbut also intosmall(i.e.,|x |< 1)
andlarge.

It then turns out that a relatively simple solver built on
top of this core system is already sufficient. AUTOBAYES

thus essentially relies on a low-order polynomial (i.e., lin-
ear, quadratic, and simple cubic) symbolic solver. However,
it also shifts and normalizes exponents, recognizes multiple
roots and bi-quadratic forms, and tries to find polynomial
factors. It also handles expressions inx and(1 − x) which
are common in statistical applications.

A smaller part of the symbolic subsystem implements
the graphical reasoning routines necessary for Bayesian net-
works with plates, for example, computing the parents, chil-
dren, or Markov blanket [18] of a node.

Intermediate Code. The code fragments in AUTO-
BAYES’ schemas are written in an imperative intermediate
language. This is essentially a “sanitized” variant of C (i.e.,
no pointers, side effects in expressions etc.), similar in spirit

to CIL [16]. Unlike CIL, however, the AUTOBAYES in-
termediate code also contains a number of domain-specific
constructs like vector/matrix operations, finite sums, and
convergence-loops.

Optimization. Straightforward schema instantiation and
composition produces suboptimal code; worse, many of the
suboptimalities cannot be removed completely using a sep-
arate, after-the-fact optimization phase. AUTOBAYES thus
interleaves synthesis and optimization. Schemas can ex-
plicitly trigger large-scale optimizations which take into ac-
count information from the synthesis process. For example,
all numeric optimization routines restructure the goal ex-
pression using code motion, common sub-expression elim-
ination, and memoization; since the schemas know the goal
variables, no dataflow analysis is required to identify invari-
ant sub-expressions, and code can be moved around much
more aggressively, even across procedure borders. Schemas
can also generate dynamic rewrite rules (similar to dynamic
rules in Stratego [22]) which are applied whenever symbolic
simplification is used.

A final rewrite-based optimization pass re-introduces
eliminated operators like subtraction and division (“denor-
malization”) to improve expression evaluation and performs
a number of peephole optimizations to improve the legibil-
ity of the generated code. Currently, “traditional” dataflow-
oriented optimizations like constant propagation or loop fu-
sion are left to the compiler; however, such optimizations
can also be encoded in a rewrite-based approach [17].

Code Generation. In a final step, AUTOBAYES trans-
lates the optimized intermediate code into code tailored for
a specific run-time environment. Currently, AUTOBAYES

has code generators for the Octave and Matlab environ-
ments; it can also produce standalone C and Modula-2 code.

Each code generator employs one rewrite system to elim-
inate the constructs of the intermediate language which are
not supported by the target environment (“desugaring”) and
a second rewrite system to clean up the desugared code;
most rules are shared between the different code generators.
The actual surface syntax is then produced by a straightfor-
ward pretty-print of the syntax tree.

Certification. Schema-based synthesis approaches can-
not ensure “correctness-by-construction” the same way as
purely deductive approaches. Since formally verifying the
entire system is unfeasible, we certify each generated pro-
gram individually. We concentrate on specific aspects of
program safety (e.g., memory safety) which are formal-
ized in a safety policy as a set of Hoare-rules [23, 8]. The
schemas are extended to generated code and all required
annotations such that a verification condition generator can
produce proof obligations; these are then discharged using
an automated theorem prover.

Test-Data Generation.Statistical models also allow to
generate problem-specific test data (i.e.,sampling), if the

4



the edges of the extracted network are followed forward
from the sources and random numbers are generated along
the way. AUTOBAYES uses this interpretation to generate
model-specific sampling programs which can be used to
validate the models and solutions.

3 A Hierarchical Set of Models

Knuth and Hajian [12] have presented a hierarchical set
of models they used to analyze the images of planetary neb-
ulae. Each of the three models estimates a parameter set
which is then refined by the subsequent models. Here we
show how these models are represented in AUTOBAYES’
specification language, and how the code is derived.

3.1 Gaussian Model

The initial analysis task is to identify the position of the
center of nebula on the image; this also serves as starting
point for all subsequent analysis tasks. Many quick-and-
dirty solutions (e.g., computing the center of the light mass
over the entire image) can be devised for this task, but us-
ing AUTOBAYES even a statistically clean solution can be
obtained quickly.

The two core ideas of all the models presented by Knuth
and Hajian are (i) that the light intensity which is to be ex-
pected at a given pixel position(x, y) on the image can be
described by a functionF of this position, the (unknown)
center(x0, y0) of the nebula and, depending on the func-
tion, some additional parameters, and (ii) that the measured
intensities can be fitted against this function using a simple
mean square error minimization. The only difference be-
tween the three models is the form ofF . In the first model,
F has the shape of a bell whose apex is at(x0, y0) which
can be formalized by a two-dimensional Gaussian curve:

F (x, y) = i0 · e−
(x0−x)2+(y0−y)2

2r2 (1)

The additional parametersi0 andr capture the overall inten-
sity and extent of the nebula (i.e., the height and diameter
of the bell).

Model Specification. The AUTOBAYES specification
shown in Figure 3 is a direct transcription of the underly-
ing mathematics. The distribution clause for the image pix-
els in line 17 formalizes the idea that the expected value
of the pixel(i, j) can be described by the functionF (x, y)
from Equation (1); remember that the expected value of a
Gaussian random variable is given by the mean (i.e., first
parameter) of the distribution. The standard deviation (i.e.,
second parameter) of the distribution represents the error
of the fit. In combination with the Gaussian distribution,
the task clause in line 18 thus specifies a mean square er-
ror minimization. The constraints formalize additional as-

sumptions on the structure of the image or the output of the
instrument (cf. line 13).

Mathematical Derivation. For the Gaussian model, the
program derivation can neatly be separated into two phases
such that the first phase is a purely mathematical derivation
and the second phase only instantiates code templates; in
general, however, this is not the case and symbolic compu-
tation and template instantiation are interleaved.

The first step is to unfold the entirepixel-matrix element
by element, using a decomposition schema based on the
conditionalized version of the general product rule for prob-
abilities:

pr(pixel | i0, x0, y0, r, σ)

=
∏nx

i=1

∏ny
j=1

pr(pixel(i, j) | i0, x0, y0, r, σ)

The precondition for this step is that the pixels are pairwise
independent, given the remaining variables, i.e., that

pr(pixel(i, j) | pixel(i′, j′), i0, x0, y0, r, σ)
= pr(pixel(i, j) | i0, x0, y0, r, σ)

holds for all i, j, i′, j′ such thati 6= i′ or j 6= j′. Instead
of proving this from first principles, using the distribution
information given in the model specification, AUTOBAYES

can easily check it on the Bayesian network: there is no
edge going from thepixel-node into itself and, hence, by
definition of Bayesian networks, the pixels are pairwise in-
dependent.

The probability is now elementary in the sense that on
the left of the conditioning bar we have only a single vari-
ablepixel(i, j) which depends exactly on all the variables
to the right of the conditioning bar. Hence, the probabil-
ity expression can be replaced by the distribution function.
AUTOBAYES’s domain theory contains rewrite rules for the
most common probability density functions; additional den-
sity functions can easily be added. This rewrite yields the
likelihood-function

∏nx
i=1

∏ny
j=1

1√
2πσ2

· e−

[
pixel(i,j)−i0·e

− (x0−i)2+(y0−j)2

2r2

]2

2σ2

which must be maximized w.r.t. goal variablesio, x0, y0, r,
andσ. In general it is easier to work with the log-likelihood
function which yields the same solutions during maximiza-
tion since the logarithm is strictly monotone. After simpli-
fication using the symbolic subsystem, AUTOBAYES thus
derives the following log-likelihood function:

L = −nx · ny · log(2π) − nx · ny · log(σ) −

1
2σ2 ·

∑nx
i=1

∑ny
j=1

[
pixel(i, j)−i0 · e

− (i−x0)2+(j−y0)2

2r2

]2

A solution can now be attempted in two different ways, nu-
merically or symbolically. By default, AUTOBAYES tries to

5



find symbolic solutions first. In this case, it computes the
partial differentials

∂L
∂i0

= 1
σ2 ·

∑nx
i=1

∑ny
j=1

pixel(i, j) · e−
(i−x0)2+(j−y0)2)

2r2

− i0
σ2 ·

∑nx
i=1

∑ny
j=1

e
− (i−x0)2+(j−y0)2)

r2

∂L
∂σ

= 1
σ3 ·

∑nx
i=1

∑ny
j=1

[
pixel(i, j)−i0 ·e

− (i−x0)2+(j−y0)2)

2r2

]2

−nx·ny
σ

and solves the equations

∂L
∂i0

!
= 0 ∂L

∂σ
!
= 0

which are essentially simple polynomials ini0 andσ. These
can easily be handled by the built-in equation solver; how-
ever, attempts to solve for the remaining three variablesx0,
yo, andr fail.

Code Derivation. At this point, the symbolic compu-
tations have been exhausted without leading to a complete
symbolic (i.e., closed-form) solution. AUTOBAYES thus de-
rives code for a numeric solution, incorporating the com-
puted partial symbolic solution. This is done in two steps,
which correspond to schemas in the schema library.

In the first step, AUTOBAYES converts the symbolic so-
lutions into assignment statements. Then it identifies their
order and position relative to the remaining code which is
still to be synthesized. Since both solutions contain at least
one (in fact all) of the remaining variables, they must fol-
low that code: since the solution forσ containsi0, its as-
signment must in turn follow that ofi0. AUTOBAYES then
eliminates them from the formula by applying the substitu-
tion corresponding to the solution. Variables whose solu-
tions do not depend on any unsolved variable can be con-
sidered as symbolic constants and need not be eliminated;
their corresponding assignments must precede the missing
code block. Since this reasoning is done on the (side-effect
free) expression level, a dataflow analysis is not required.

In the second step, AUTOBAYES instantiates a numeric
optimization routine, in this case the Fletcher-Reeves con-
jugate gradient method. The schema actually contains only
a wrapper to the implementation provided by the GNU Sci-
entific Library (GSL).4 However, this wrapper is not just
boilerplate code because it contains specific initialization
code and a number of auxiliary functions to evaluate the
goal function and the derivatives. AUTOBAYES contains
different heuristics to derive initialization code from spec-
ification information; here, the initial values are taken as
the midpoints of the specified ranges. AUTOBAYES also
generates the auxiliary functions; since a straightforward
translation from the goal expression would be prohibitively
inefficient, AUTOBAYES aggressively optimizes the func-
tions. The optimizations include common subexpression

4http://sources.redhat.com/gsl/

elimination, memoization, and code motion, and are ap-
plied both intra- and inter-procedural (although the latter
restricted to the generated auxiliary functions). The opti-
mizations can also take into account locally constant vari-
ables, since AUTOBAYES knows the set of goal variables.
Again, a dataflow analysis is not required since the reason-
ing is done on the expression-level.

Program Results. We have applied the generated pro-
gram to the manually masked image of IC418 shown in the
second panel of Figure 5. The third panel shows the results.
The program roughly approximates the center but its esti-
mate of the overall extent is predictably off the mark.

3.2 Sigmoidal Models

With the choice of the functionF (x, y), the Gaussian
model presented above hard-codes a number of assumptions
about planetary nebulae or, more precisely, about the struc-
ture of the images; in particular, it assumes that the images
are circular, with a pronounced intensity peak and a grad-
ual intensity falloff at the edges. However, a quick look at
Figure 5 shows that this is only a coarse approximation: the
image of IC418 is clearly more elliptic than circular, and the
intensity shows rather a broad plateau with a pronounced
falloff at the edges than the other way round.

Simple Sigmoidal Model.Knuth and Hajian thus refine
their initial model and replace the two-dimensional Gaus-
sian by a two-dimensional sigmoidal function of the form

F (x, y) = i0 ·

[
1− 1

1 + e−a
√

r(x,y)−1

]
(2)

with the auxiliary functionr(x, y)

r(x, y)= cxx·(x0−x)2 + 2cxy·(x0−x)(y0−y) + cyy·(y0−y)2

and constantscxx, cyy, andcxy

cxx = cos2 θ
r2

x

+ sin2 θ
r2

x

cyy = sin2 θ
r2

x

+ cos2 θ
r2

x

cxy = sin θ · cos θ
r2

x · r2
y

whererx andry are the extent of the nebula along the major
and minor axis, resp.,θ is its orientation, anda the intensity
falloff.

The specification for this modified model can easily be
derived from the one for the Gaussian model shown in Fig-
ure 3, essentially by replacing the mean value in the distri-
bution clause (cf. line 17) with the new version ofF , and
adding declarations for the new model variables. The auxil-
iary constants and functions are represented as deterministic
nodes in the Bayesian network, which are expanded like C-
style macro definitions during the program definition. The
program for this model is then derived using the same steps
as before; the only difference is that the symbolic expres-
sions become much more complicated.

6



Figure 5. Gaussian analysis of IC418 image: (1) original image (2) manually masked image (3) original
image with results superimposed (4) sample data generated from estimated parameter values.

The derivation and resulting program can be simplified
and sped up, if the nebula image is assumed to be axis-
aligned. This can be modeled by changing the random vari-
ableθ into a constant with known value, i.e.,

const double theta := 0 as ’orientation’.

AUTOBAYES can then propagate this constant value al-
ready on the specification level and derive code from the
simplified model.

Dual Sigmoidal Model. In a final refinement step,
Knuth and Hajian try to estimate the thickness of the shell
as well. Since projecting the three-dimensional ellipsoidal
shell of gas onto a two-dimensional image produces an el-
lipsoidal blob surrounded by a ring of higher intensity, the
image can be modeled as the difference of two sigmoidal
functions with the same center and orientation but different
extents, intensities, and falloffs. Re-using the auxiliary def-
initions from the simple sigmoidal model, this refinement
can also be specified easily for AUTOBAYES.

3.3 Model Hierarchy

Knuth and Hajian use the model hierarchy not only to
guide the model development but also to guide the param-
eter estimation itself, i.e., they use the results from the
coarser models as starting values for the numerical opti-
mizations in the refined models.

In AUTOBAYES, this effect can be achieved in different
ways. The most direct method is to declare the respective
parameters in the refined model asinout and then to pass
the values (manually) from one generated program to the
other. A more elegant method is to integrate the models into
a single specification which contains a list of task clauses.
Then the same program pipeline can be generated from this
combined specification; however, this capability is still un-
der development.

4 Image Segmentation Models

In their original analysis, Knuth and Hajian manually
masked the central star and the diffraction spikes (cf. Fig-
ure 5(2)). This prevents their analysis from misinterpreting

the comparatively bright star as the center of the nebula. In
this section we show how AUTOBAYES can be used to de-
rive analysis code which can replace this manual masking
step. The basic idea of all models discussed in this section is
to segment the image into different conceptual classes (e.g.,
central star, nebula, and background), and then to use these
image-specific classes to replace the generic mask.

4.1 Segmentation via Clustering

It is well-known in data analysis that many images can
already be segmented by clustering the pixels just based on
their similarities, but without taking into account any spatial
information. The simplest model for such a cluster-based
segmentation assumes that the image is produced by a mix-
ture of Gaussians in such a way that each pixel is sampled
from an independent Gaussian random variable correspond-
ing to the pixel’s cluster.

Model Specification.Figure 6 shows the AUTOBAYES-
specification for the cluster-based segmentation. At its
core is the unobserved (“hidden”) random variablec (cf.
lines 12–14) which represents the unknown cluster each
pixel belongs to and which determines the cluster’s mean
and variance (cf. line 16); its values are independently
drawn from a discrete distribution with relative frequencies
ϕ, i.e., pr(cij = k) = ϕk. The constraint on the proba-
bility vector ϕ (cf. line 11) is required to make this model
well-formed. Since we need the cluster-assignments for the
segmentation,c is declared asoutput .

Program Derivation. This model is solved by an ap-
plication of the EM-schema which is triggered by the hid-
den variable structure of the corresponding Bayesian net-
work. The synthesized EM-algorithm alternates between
estimating the hidden variablec (M-step) and the model pa-
rametersµ, σ, andϕ (E-step) until it reaches convergence.
The EM-schema can thus modify the model by marking the
hidden variablec as known. AUTOBAYES then recursively
solves this modified model, using a number of decomposi-
tion schemas enabled by the modification; all emerging sub-
problems can eventually be solved symbolically (for the de-
tailed derivation cf. [10, 11]).

7



1 model segment as ’Image segmentation via Clustering’.

... (see Figure 3) ...

% Class parameters and relative frequencies
6 const nat n_classes as ’number of classes’.
7 where 0 < n_classes.
8 double mu(1..n_classes), sigma(1..n_classes).
9 where 0<sigma(_).

10 double phi(1..n_classes).
11 where sum(I:=1..n_classes, phi(I))=1.

% Classes and Distribution
12 output nat c(1..nx, 1..ny) as ’class’.
13 where 1 =< c(_,_) && c(_,_) =< n_classes.
14 c(_,_) ˜ discrete(phi).

% Data and Distribution
15 data double pixel(1..nx, 1..ny) as ’image’.
16 pixel(I,J) ˜ gauss(mu(c(I,J)), sigma(c(I,J))).

% Task
17 max pr(pixel| {phi,mu,sigma }) for {phi,mu,sigma }.

Figure 6. A UTOBAYES-specification for image
segmentation model.

Program Results. Figure 7 shows the result of seg-
menting the IC418 image according to the identified differ-
ent classes. In particular, a segmentation into three classes
already isolates the central star, the nebula, and the back-
ground from each other. It can thus be used as a pre-
cise, image-specific mask (cf. Figures 5(2) and 7(3)). More
classes reveal more details, e.g., identify the nebula’s shell
and separate the halo from the background, but too many
classes bear the risk of overfitting the image.

4.2 Data Fusion

The segmentation model above can easily be generalized
to multivariate data, essentially by changing thedata dec-
laration and the corresponding distribution clause to

15 data double pixel(1..nc,1..nx, 1..ny) as ’data cube’.
16 pixel(C,I,J) ˜ gauss(mu(C,c(I,J)), sigma(C,c(I,J))).

and adapting resp. adding some declarations. This allows us
to “fuse” multiple images of IC418 which are taken in dif-
ferent wavelengths, resulting in the more detailed and stable
segmentations shown in Figure 8. This model is solved by
the EM-algorithm in the same way, only that the parameter
vectors are replaced by matrices.

4.3 A Refined Segmentation Model

The segmentation models discussed can be refined to
take spatial information into account, e.g., by adding ge-
ometric background knowledge such as the elliptic shape of
the nebula. Such a refinement can be accomplished by a
simple hierarchy of models. First, clustering is performed,
using the model in Figure 6. Then, all data points belong-
ing to the “shell” class of the nebula are extracted from the
data. These data are then analyzed with a model that fits the

Figure 8. IC418 data cube: (1) five-class seg-
mentation (2) seven-class segmentation.

data to an elliptical ring. This model is very similar to our
Gaussian model but uses a slightly different function (d is
the “thickness” of the elliptical ring):

F (x, y) = i0 · e−
(
√

r(x,y)−1)2(r2
x+r2

y)

4d2 (3)

AUTOBAYES also allows to combine both models into
a single specification. We only need to replace the mean
mu(c(I,J)) in line 16 of Figure 6 by our functionF
where all parameters (i0, rx, ry, d) are now vectors over the
classes, i.e., they are indexed byc(I,J) . AUTOBAYES

synthesizes a program with a numerical optimization rou-
tine nested within an EM-algorithm. Figure 9 shows sam-
pling data generated with the parameters estimated by that
model. Class 1 (white) corresponds to the hull, class 2
(gray) to the core, and class 3 (not shown) to the back-
ground.

Figure 9. Sample data from refined segmen-
tation model.

5 Evaluation

Table 1 summarizes the results; for each model (refer-
enced by the section where it is discussed), it lists the size of
the specification and the generated program (includinggen-
erated comments), and the synthesis time (measured on an
unloaded 2GHz/4GB LinuxPC).-nosolve and-nolib
are AUTOBAYES command line options which suppress the
application of the schemas using partial symbolic solutions
and library components, resp., described in Section 3.1.

The table shows that AUTOBAYES’s specification lan-
guage allows a compact problem representation; none of the

8



Figure 7. Segmentations of IC418 image: (1) two-class segmentation (2) three-class segmentation
(3) ditto, white class used as mask load to original image (4) five-class segmentation.

Model |Spec| |Code| Tsynth

gauss (3.1) 18 1045 36.4s
-nosolve 703 2.4s
-nolib 764 4.9s
-nolib -nosolve 494 1.1s

sigmoid (3.2) 28 - -
-nosolve 12650 39m42.9s
-nolib -nosolve 872 3.2s

sigmoid-0 (3.2) 27 581 1.3s
sigmoid-2 (3.2) 35 1202 6.7s
segment (4.1) 17 518 1.2s
fusion (4.2) 18 602 1.4s
segment-2 (4.3) 30 1765 40.6s

Table 1. Summary of Results

models requires more than 35 lines. The major difficulty in
writing the specifications was to understand and then to ex-
press the core idea of the scientists’ models, which was not
completely evident from the original analysis. After that,
each specification took only a few minutes to write and in
general one or two iterations to debug and complete (e.g.,
adding constraints).

The table also shows the overall feasibility of the ap-
proach. AUTOBAYES was able to derive code for each of
the models; scale-up factors are generally around 1:30. Syn-
thesis times are generally only a few seconds and compara-
ble to compilation times of the derived code. However, for
thegauss andsigmoid models, AUTOBAYES spends al-
most all time simplifying the partial differentials and then
optimizing the auxiliary functions evaluating them; in the
sigmoid -case, this even exhausts the available memory.
With the command line options, AUTOBAYES can be forced
to stay away from these expensive calculations and code
is derived much faster, using the Nelder-Mead simplex
method which requires no differentials.5

Search space explosion is a common problem in pro-
gram synthesis. In our case, it is mitigated by the deter-
ministic nature of the symbolic-algebraic computations, the
higher level of abstraction inherent to the schemas, and the

5The table entries forsigmoid-0 , sigmoid-2 , andsegment-2
thus refer to the-nolib -nosolve variants.

inherent structure of the schema library. Still, search spaces
are large. For thegauss -model, AUTOBAYES derives 224
programs, many of them equivalent, in 35 minutes total
synthesis time. Parts of the search space can be pruned
away manually by command line options like-nosolve ,
but more implicit control is required, especially when the
schema library grows further.

The scientists’ original Matlab code uses a gradient de-
scent method; it computes the differentials in a single it-
eration over all pixels while the synthesized code iterates
once for each differential but reuses memoized subexpres-
sions. This decomposition requires domain knowledge not
yet formalized for AUTOBAYES. For thegauss -model,
the (interpreted) Matlab-code is approx. 70 lines, mainly
for the computation of the gradient. It requires on average
174 seconds to converge, while the synthesized C++-code
only requires 11 seconds.

6 Related Work

Scientific computing is a (relatively) popular applica-
tion domain for program synthesis; due to its complexity,
most related work also follows a schema-based approach.
However, most work focuses on wrapping solvers for par-
tial differential equations (PDEs). SciNapse [1] is a general
“problem-solving environment” for PDEs; it supports code
generation for a variety of features in the PDE-domain, as
for example coordinate transformation or grid generation.
SciFinance [2] is a domain-specific system for option pric-
ing built on top of SciNapse. Ellmanet al. [9] describe
a system to generate simulation programs from PDEs. All
of these systems use Mathematica as underlying symbolic
engine. Ctadel [21] is PDE-based synthesis system for the
weather forecasting domain. It is also implemented in SWI-
Prolog and contains its own symbolic engine.

Other domains than PDEs have been tackled less often.
Amphion [19] is a purely deductive synthesis system which
has been used to synthesize astronomical software using li-
brary components. Amphion/NAV [25] applies the same
technology to the state estimation domain. The scale-up dif-
ficulties encountered there led to a switch to a schema-based

9



approach and the development of the AUTOFILTER-system
[24] as a domain-specific extension of AUTOBAYES. It pro-
vides its own specification language and schemas but reuses
the core system. Planware [4] deductively synthesizes high-
performance schedulers. It uses concepts from higher-order
logic and category theory to structure the domain theory and
thus to reduce the required proof effort.

Schema-based program synthesis is also related to gener-
ative programming [6], since schemas (more precisely, the
code fragments) correspond totemplates. The major dif-
ferences are that (i) the almost completely syntax-directed
template instantiation is less powerful and less secure than
schema instantiation and (ii ) the users still have to write the
core algorithm.

Code libraries are common in scientific computing and
data analysis, but they lack the level of automation achiev-
able by program synthesis. For example, the Bayes Net
Toolbox [15] is a Matlab library which allows program de-
velopment on the model level, but it does not derive algo-
rithms or generate code. BUGS [20] is a statistical model
interpreter based on Gibbs-sampling, a universal—but less
efficient—Bayesian inference technique; it could be inte-
grated into AUTOBAYES as an additional schema.

7 Conclusions

We presented AUTOBAYES, a fully automatic program
synthesis system for the data analysis domain and demon-
strated how it can be used to support a realistic scientific
task, the analysis of planetary nebulae images taken by
the HST. We specified the hierarchy of models presented
in [12]. AUTOBAYES was able to automatically generate
code for these models; in tests, the synthesized code gave
the same results as the scientists’ Matlab code. We also
used AUTOBAYES to refine the analysis, combining cluster-
based image segmentation with geometric constraints.

Key elements to achieve these results are the schema-
based synthesis approach, an efficient problem representa-
tion via Bayesian networks, and a strong symbolic-algebra-
ic subsystem. This combination is unique to AUTOBAYES

and allows us to solve realistic data analysis problems.
However, AUTOBAYES must still be improved before it

can be delivered to the working data analyst. The domain
coverage must be extended and schemas must be added to
enable solutions for new classes of models (e.g., covari-
ate data). Synthesis from large models requires support
for hierarchical specifications and more powerful optimiza-
tions to generate faster code. Finally, numeric optimization
schemas must be extended with numeric constraint handling
to produce more versatile and robust code.

Yet, AUTOBAYES already demonstrates that program
synthesis technology has reached a state that enables scien-
tists to think and to program in models rather than in code.

Acknowledgments. Kevin Knuth and Arsen Hajian provided
the nebula data and their analysis programs; Kevin also com-
mented on an earlier version of this paper. Wray Buntine con-
tributed substantially to the early development of AUTOBAYES.

References

[1] R.L. Akerset al.SciNapse: A problem-solving environment for par-
tial differential equations.IEEE Comp.Sci.Eng., 4(3):33–42, 1997.

[2] R.L. Akerset al. SciFinance: A program synthesis tool for financial
modeling.AI Magazine, 22(2):27–41, 2002.

[3] A. Ayari and D. Basin. A higher-order interpretation of deductive
tableau.JSC, 31(5):487–520, 2001.

[4] L. Blaine et al. Planware – domain-specific synthesis of high-
performance schedulers. InASE-13, pp. 270–280. IEEE, 1998.

[5] W.L. Buntine. Operations for learning with graphical models.JAIR,
2:159–225, 1994.

[6] K. Czarnecki and U.W. Eisenecker.Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2002.

[7] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm.J. Royal Statistical
Society Series B, 39:1–38, 1977.

[8] E. Denney and B. Fischer. Correctness of source-level safety poli-
cies. InFM-2003. To appear.

[9] T. Ellman, R. Deak, and J. Fotinatos. Knowledge-based synthe-
sis of numerical programs for simulation of rigid-body systems in
physics-based animation. InASE-17, pp. 93–104. IEEE, 2002.

[10] B. Fischer and J. Schumann. AutoBayes: A system for generat-
ing data analysis programs from statistical models.JFP, 2003. To
appear.

[11] A.G. Gray, B. Fischer, J. Schumann, and W. Buntine. Automatic
derivation of statistical algorithms: The EM family and beyond. In
NIPS-15. MIT Press, 2002.

[12] K.H. Knuth and A.R. Hajian. Hierarchies of models: Toward under-
standing of planetary nebulae. InBayesian Inference and Maximum
Entropy Methods in Science and Engineering 22, pp. 92–103. 2002.

[13] Z. Manna and R. Waldinger.The Deductive Foundations of Com-
puter Programming. Addison-Wesley, 1993.

[14] G. McLachlan and T. Krishnan.The EM Algorithm and Extensions.
Wiley, 1997.

[15] K. Murphy. The Bayes Net Toolbox for Matlab.Computing Science
and Statistics, 33, 2001.

[16] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: In-
termediate language and tools for analysis and transformation of C
programs. In11th Intl. Conf. Compiler Construction, LNCS 2304,
pp. 213–228. Springer, 2002.

[17] K. Olmos and E. Visser. Strategies for source-to-source constant
propagation. InIntl. Workshop Strategies in Rewriting and Pro-
gramming, ENTCS70.6. Elsevier, 2002.

[18] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, 1988.

[19] M. Stickel et al. Deductive composition of astronomical software
from subroutine libraries. InCADE-12, LNAI 804, pp. 341–355.
Springer, 1994.

[20] A. Thomas, D.J. Spiegelhalter, and W.R. Gilks. BUGS: A program
to perform Bayesian inference using Gibbs sampling. InBayesian
Statistics 4, pp. 837–842. Oxford Univ. Press, 1992.

[21] R.A. van Engelen, L. Wolters, and G. Cats. Ctadel: A generator
of efficient code for PDE-based scientific applications. In9th Intl.
Conf. Supercomputing, pp. 86–93. ACM, 1996.

[22] E. Visser. Scoped dynamic rewrite rules. InIntl. Workshop Rule-
Based Programming, ENTCS59.4. Elsevier, 2001.

[23] M. Whalen, J. Schumann, and B. Fischer. Synthesizing certified
code. InFME 2002, LNCS 2391, pp. 431–450. Springer, 2002.

[24] J. Whittle and J. Schumann. Automating the implementation of
Kalman-filter algorithms. In review.

[25] J. Whittleet al. Amphion/NAV: Deductive synthesis of state esti-
mation software. InASE-16, pp. 395–399. IEEE, 2001.

10


